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Abstract. We analyze the time evolution of simple nuclear rotational wave packets (WP) called circular,
linear or elliptic, depending on squeezing parameter η, assuming that E = ~ω0 I(I + 1). The scenario of
fractional revivals found by Averbukh and Perelman is adapted to symmetric WP and compared to that
which holds for asymmetric WP. In both cases various shapes are identified under these lines in particular
many cases of cloning. ‘Mutants’ WP are found most often. Finally the time evolution of a WP formed by
Coulomb excitation on 238U and calculated by semiclassical theory is also presented.

PACS. 03.65.Sq Semiclassical theories and applications – 03.65.Ge Solutions of wave equations: bound
states – 21.10.Re Collective levels

1 Introduction

It is somewhat paradoxical after many years of confir-
mation of quantum mechanics that new features can be
learned on two of the simplest systems that are taught in
the elementary courses: the hydrogen atom and the rigid
rotor. It was indeed realized only in the early 90’s [1,2]
that a wave packet in the hydrogen atom evolves in time
according to a universal scenario discovered theoretically
by Averbukh and Perelman [3]. For short times a well built
wave packet moves around a Kepler ellipsis, and then it
spreads along the ellipsis. The surprise was that the wave
packet is seen at specific times as a superposition of frac-
tional wave packets concentrated around specific points
on this trajectory. This behaviour results from the uni-
tary quantum evolution and from self interferences. By
changing the initial wave packet one can also obtain a
radial wave packet without an analogue classical trajec-
tory which will also experience the scenario of fractional
revivals [4]. An extension of these results has later been
been made by Bluhm and Kostelecky [5] who showed the
existence of superrevivals for longer times.

The aim of this article is to describe the similar steps
for the rotation of symmetric rigid rotors with possible ap-
plication to nuclei and to molecules. The theory of [3] is ex-
act for all times if the energy spectrum is quadratic in one
quantum like the infinite square well [6] or in two quantum
numbers like [7] or the rigid top with axial symmetry. In
[8] we studied various sets of angular momentum coherent
states which represent an heteronuclear diatomic molecule

or a rigid body with axial symmetry. Our purpose is to
show the rotation of a symmetric object described by a
quantum pure state in the most obvious scheme (i.e. if
the law E = (~2/2J)(I(I + 1)) holds exactly) for a wave
packet specifically designed to rotate and what the motion
is, if the initial preparation of the wave packet is different.
Because of the quantum spreading a quantum WP does
not rotate at all like a classical rigid body, its spreading
differs according to the initial conditions of its prepara-
tion. The introduction of this spreading is necessary if
one introduces the concept of a WP which is not a com-
mon practice in the field of rotational nuclei or molecules.
We must however acknowledge that this concept was first
introduced in the past in the reference book by Broglia
and Winther [9] on heavy ions collisions, then in a more
extensive work by Fonda et. al. [10] who have discussed
the mechanism of generation of several sets of rotational
coherent WP. Our work completes these two works in the
sense that we give a full study of the time evolution of the
WP which is now possible after the work of [3]. Our WP
depend also on a new squeezing parameter η introduced
in [8] which enables to change the geometry of the WP in
a most significant manner.

Before proceding to our work we must also quote most
elegant papers by Berry and Golberg [11] and Berry [12]
who have studied the full time evolution of the propagator
of a nuclear spin with a hamiltonian of the form L2/(2J).
More recently various Talbot effects were also discovered
with the help of renormalization techniques [13]. The oc-
currence of fractal dimensions both in space and time dur-
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ing the evolution of uniform WP in boxes of arbitrary di-
mensions has been also discovered [14]. These last results
show that the spreading of WP in a bound system is ex-
tremely rich. Our purpose is to emphasize this richness for
two dimensional WP on the sphere.

2 Asymmetric and symmetric squeezed WP

2.1 Asymmetric WP

In [8] we have studied the properties and the time evolu-
tion of the following WP called the exponential coherent
WP which depends on two parameters N and η. This nor-
malized state is defined as

Ψη(θ, φ) =

√
2N

4π sinh(2N)
eN sin θ(cosφ+iη sinφ) . (1)

For large enough values of N the probability density asso-
ciated to it is symmetric around Ox and is peaked within a
solid angle Ω = 4π/(4N + 1). Thus, large values of N cor-
respond to defining the orientation of the axis of symmetry
of the system in a very sharp way, quite independently on
the value of the average angular momentum L. For the
components of L one can see that

〈Lx〉 = 0 〈Ly〉 = 0 , (2)

〈Lz〉 = η(N − 1
2

) . (3)

Equation (3) is correct only for large N , for small N there
is a small correction term not important for our discussion.
Therefore, the average of L is fixed by the product ηN .
Finally we have proved [8] that the state (1) is made of
a special class of angular momentum states called in the
literature by the name of intelligent spin states (for real
values of η). They obey the equation

(Lx + iηLy)Ψη+ = 0 . (4)

From this equation one can derive that the parameter η
has the meaning of a squeezing parameter since

|η|2 =
∆L2

x

∆L2
y

(5)

For all real values of η the minimum uncertainty condition
is satisfied

∆L2
x ∆L

2
y =

1
4
〈Lz〉2 . (6)

The states (1) are such the analogous of the squeezed
states of the electromagnetic field. In this article we will
distinguish two limiting values of η: the case η = 0 cor-
responds to a purely real WP initially without momen-
tum which we call the linear WP, the case η = 1, called
a circular WP, is an eigenstate of L+. The other values
correspond in the same terminology [8] to elliptic WP. In-
deed these WP can be derived from Gaussian WP which
are respectively associated to linear, circular and elliptic
trajectories if they evolve in 3D harmonic oscillator.

The case of complex values of η does not bring any
interesting freedom [17], the main difference lying in the

fact that the equality (6) is violated. Therefore η will take
only real values in the following.

The spherical harmonic expansion of the state (1) is
written in terms of coefficients bIM as

Ψη =
∑
IM

bIM Y IM (θ, φ) , (7)

bIM =

√
2N

sinh(2N)

∑
ll′

(−1)l
′
N l+l′ (1 + η)l(1− η)l

′√
(2l)!(2l′)!

× 〈ll
′00|I0〉〈ll′l − l′|IM〉√

(2I + 1)
. (8)

For η = 1 only the b’s with M = I are non-zero. This
is why these wave packets are called circular. In the case
η = 0 it is simpler to make a rotation of the coordinate axis
to get an eigenstate of Lz with eigenvalue 0, the expansion
of Ψ0 takes the form

Ψ0 =
∑
I

bI0 Y
I
0 (θ, φ) . (9)

with bI0 given in terms of spherical Bessel function of the
first kind by

bI0 =

√
2N

sinh(2N)

√
(2I + 1)

√
π

2N
II+1/2(N) . (10)

2.2 Symmetric WP

The situation we want to describe is that of an even, de-
formed nucleus with an axis of symmetry Oz such that
〈Lz〉 = K = 0 and with a plane of symmetry perpen-
dicular to this axis. No other degree of freedom will be
included. We therefore consider instead of (1) the follow-
ing symmetrical combination

Ψη+(θ, φ) =
C+

2
[eN sin θ(cosφ+iη sinφ)

+ e−N sin θ(cosφ+iη sinφ)] . (11)

Clearly for large N it represents two antipodal waves,
within the same solid angle as above and with the same
symmetry around Ox. The normalization constant C+ de-
pends now both on N and ηN because of an interference
term between the two waves. It is given by

C+ =
{

2π
[

sinh 2N
2N

+
sin 2ηN

2ηN

]}(−1/2)

(12)

It should be stressed that the main difference in the time
evolution of (1) and (11) comes from the interference be-
tween these two parts. As we will see it will become much
different from a normalization factor.

It is straightforward to verify that (2) to (6) are still
valid. We now express the wave packet Ψη+ in terms of
new coefficients bIM+ as

Ψη+ =
∑
IM

bIM+ Y
I
M (θ, φ) , (13)

and these coefficients are related to the bIM by
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bIM+ =

{
0 for I odd
√

2
(
1 + sin 2ηN

η sinh 2N

)−1

bIM '
√

2 bIM for I even.
(14)

3 Time evolution

3.1 The rigid rotor assumption

Let us study the evolution of Ψη+ for η = 0 and η = 1
assuming that the energy levels obey the rule

EI =
~2

2J
I(I + 1) . (15)

In the following we will use ω0 = ~/(2J) and we define an
average angular momentum by

Ī(Ī + 1) = 〈Ψη+|L2|Ψη+〉 . (16)

We can now use the work of [3] to analyze the structure of
the wave packets at time t knowing simply that the wave
packets are given by

Ψη+(θ, φ, t) =
∑
IM

bIM+ Y
I
M (θ, φ) e−iω0 I(I+1)t (17)

It is necessary to introduce two characteristic times as in
[3]

Tcl =
2π
ω0

1
2Ī + 1

, Trev =
2π
ω0

. (18)

Note that Trev >> Tcl if Ī is large enough. We have with
(17) and (18)

Ψη+(θ, φ;Trev) = Ψη+(θ, φ; 0) . (19)

3.2 The outline of the theory of fractional revivals

Let us sketch the general theory of [3] which allows to
find a universal scenario of fractional revivals. Near t =
(m/n)Trev, where m/n is an irreducible ratio of two inte-
gers, it has been proved in [3] that

e−2iπI2 m
n =

l−1∑
s=0

as e−2iπI sl . (20)

This sum contains q = n
2 non-zero terms if n is even and

q = n terms if n is odd. The integer l = n
2 if n is a multiple

of 4, l = n in the other cases (therefore the difference
between l and q is necessary to take into account that the
as with even s are zero if n is even and not multiple of 4).
The modulus of as is simply for all the cases where it is
non-zero equal to:

|as| =
1√
q

(21)

The phase of as as a function of m,n and s can be found
in an older paper written in a quite different context [15].
Therefore one writes after the insertion of (20) into (7)
taken at time t = m

n Trev

Ψη(θ, φ;
m

n
Trev)=

l−1∑
s=0

as

[∑
IM

bIM Y IM e−2iπI(mn + s
l )

]
(22)

=
l−1∑
s=0

as Ψ
(s)
cl (θ, φ; ts) . (23)

Any wave packet is a sum of q fractional wave packets
Ψ

(s)
cl , each with a different effective time ts

ts = (
m

n
+
s

l
)Trev . (24)

The fractional wave packet is defined as

Ψ
(s)
cl (θ, φ; ts) =

∑
IM

bIM Y IM e−iω0Its . (25)

3.3 Clones and mutants

There are several cases for which Ψcl is a clone of the initial
Ψ defined by (1) or (7):

i) if the expansion (7) contains only bIM with the single
values M = I, this is the case for the wave packet (1)
for η = 1. One obtains for each ts

Ψcl(θ, φ; ts) = Ψη(θ, φ− ω0ts) . (26)

This result is independent of the distribution of the
bII ’s, it applies to all kinds of circular wave packets.
The sum (23) is a superposition of q clones of the ini-
tial wave packet. In [6] this conclusion was derived for
an infinite one-dimensional well. In our case with η = 1
the q clones are localised around q axis forming a sym-
metric fan in the Oxy plane.

ii) if ω0ts is a multiple of 2π, i.e. if as0 is non-zero for the
value

s0 = n−m , (27)

then
Ψcl(θ, φ; ts0) = Ψη(θ, φ, 0) . (28)

This occurs when n is odd or even and not multiple
of 4. For these times there is a clone at the place of
the initial wave packet with the amplitude as0 . The
existence of this clone is independent of the bIM and
the parameter η.

In [8] we have proposed to call mutants the fractional
wave packets Ψcl which are not clones and which have a
different geometry due to the phase e−iω0Its in (25). We
have also described the change of the shape of mutants
as a function of η for fixed ts. This is made by consid-
ering two extreme cases where the shape of Ψcl is simply
understood. For η = 1 Ψcl is a clone of the initial wave
packet located around a given direction in the Oxy plane.
For η = 0 the expansion (9) shows that wave packet Ψ0 at
t = 0 as well as for all t and also each Ψcl have cylindrical
symmetry around Ox. Ψcl is therefore peaked around one
or two rings around Ox. For intermediate values of η the
mutants have shapes making a smooth transition between
the two extreme cases.
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This theory fits perfectly to the case of the asymmetric
WP which contains terms with even and odd values of I
in equations (7), (20) and (22). In the case m

n = 1
2 (24)

gives ts = Trev, as = δs 1 and the WP is periodic with
period ts = Trev/2. This reduced periodicity can be seen
immediately from the fact that I(I + 1) is always even. It
is therefore enough to consider times such that m

n ≤ 1
2 .

3.4 Additional rules for symmetric WP

In the symmetric case corresponding to (11) and (13) with
(14), an additional symmetry arises from the fact that (20)
is now used for even values of I. If we put n = 4n′ in (20)
we obtain q = l = 2n′ values of s in the general case.
However if I is always even l takes the value of n′/2 if n′
is a multiple of 4 or n′ is odd or even and not multiple
of 4. For n′ even and not multiple of 4 the as with even
s are zero. Therefore the number q of fractional waves is
largely reduced and becomes

q =
{
n′ for odd n′

n′/2 for even n′. (29)

For n′ = 1 one can write

e−2iπ I(I+1)/4 = eiπ I/2 , (30)

for n′ = 2
e−2iπ I(I+1)/8 = e−i3π I/4 . (31)

Inserting these values in (17) for the particular case of
circular WP (η = 1) one obtains the following periodic
behaviour

Ψ1+(θ, φ, Trev/4) = Ψ1+(θ, φ+ π/2, 0) , (32)

Ψ1+(θ, φ, Trev/8) = Ψ1+(θ, φ− 3π/4, 0) . (33)

For η 6= 1 the insertion of the phases (29) into (17) pro-
duces a single WP different from the initial one, i.e. a
single mutant. For η = 1 the time interval necessary to
study the evolution is t = Trev/8, but for η 6= 1 it is still
t = Trev/2.

At fractional times of Trev/4, like t = Trev
m

4n′ the fol-
lowing formula holds for η = 1 and describes fully the
cloning of these species of symmetric WP

Ψ1+(θ, φ, Trev
m

4n′
)=

l∑
s=0

asΨ1+(θ, φ−π(
s

l
+
m

2n′
), 0), (34)

with the general result that the sum contains q = n′/2
non-zero terms for even n′ (with l = n′/2 if n′ is a multiple
of 4, l = n′ in other cases and as is zero if n′ is even and
not multiple of 4 and s is even).

For example the application of this formula for t =
Trev/16 gives two clones oriented along perpendicular di-
rections in the Oxy plane since

Ψ1+(θ, φ, Trev/16) = a0 Ψ1(θ, φ− π/8, 0)
+ a1 Ψ1(θ, φ− 5π/8, 0) . (35)

Similarly, for t = Trev/24 one obtains 3 clones etc... For
η 6= 1 the clones should be replaced by a corresponding
number of mutants.

If on the other hand n is even and not multiple of 4,
i.e. if n = 2n′ with n′ odd, the limitation of even I in
(20) leads to l = n′ therefore all the as are non-zero but
should be calculated with an effective ratio 2m/n′ instead
of m/n. The number of fractional WP is then the same
as for the asymmetric case. Similarly, if n is odd there are
q = n fractional WP. Note that for odd n and even n not
multiple of 4 (27) and (28) also hold: one of the fractional
WP is a clone at the place of the initial WP.

4 Numerical calculations for the exponential
coherent WP

4.1 Comparisons between the symmetric and
asymmetric WP

As already stated above, the WP (11) differs from (1) by
the interference terms which are almost negligible if one
calculates the probability density at t=0. However the
previous discussion on the time evolution shows a large
number of differences. Therefore a comparison between
asymmetric and symmetric WP is presented in the fig-
ures of this letter. With high enough N one obtains a
generic behaviour. For η = 1 we have chosen N = 14 i.e.
Ī = 13.5. This value of Ī corresponds to the average exci-
tation energy of the K = 0 rotational band of 238U that
is obtained from Coulomb excitation by 200 MeV 40Ar
projectiles. Coulomb excitation does not produce weights
bIM so simply distributed to give a WP like (11).

Figure 1 shows ‘carpets’ for the two cases with N = 14
and η = 1. The carpet is the intersection of the plane

Fig. 1. Time evolution of circular, asymmetric (left) and sym-
metric (right) WP with N = 14 in the ‘carpet’ representa-
tion. The |Ψ(θ, φ, t)|2 is presented in the contour plot for fixed
θ = π/2
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Fig. 2. Shapes of circular, asymmetric WP
in the initial stages of the evolution and some
fractional revival times. Note different vertical
scales used in order to show details

Oxy with the probability density as a function of time for
0 < t < Trev/2. For t < Trev/25 = Tcl the WP spread and
occupy all values of phi. For t > Tcl there are clear win-
dows near values (m/n)Trev for which the WP is formed
of q clones, with q given as discussed in the text for asym-
metric and symmetric case respectively. In the former case
one has large windows for m/n = 1/4 (q = 2), m/n = 1/6
and 1/3 (q = 3), m/n = 1/8 and 3/8 (q = 4) and it is
possible to see as much as q = 8 clones without much in-
terference between them (see Fig. 2). In the latter case we
obtain instead due to (31) and (33) a slide angle of −3π/4
since the following equation takes place

Ψ1+(θ, φ, t+ Trev/8) = Ψ1+(θ, φ− 3π/4, t) . (36)

Therefore the interval Trev/2 is separated into four stripes
into which essentially only a single large time window is
seen for m/n = 1/16 with q = n′/2 = 2 clones. By zoom-

ing within Trev/8 one can see other windows as well as we
will see in Fig. 3.

Figure 2 and 3 show the probability density as a func-
tion of θ and φ for a selection of times where one can un-
derline similarities or differences between the two cases.
For 0 < t < Tcl the WP essentially spreads in φ be-
cause the corresponding values of n produce too many
clones with big interferences [6]. For t = Trev/50 the two
peaks forming the symmetric WP interfere strongly and
the WP occupies already all the values of φ. In the next se-
quences of times one identifies (q, q′) clones respectively in
the asymmetric and symmetric cases: m/n = 1/16 (8, 2),
m/n = 1/3 (3, 3), m/n = 1/24 (12, 3): there the 12 clones
are strongly interfering, m/n = 1/5 (5, 5), m/n = 1/6
(3, 3).

Figure 4 shows the carpets corresponding to η = 0
with N = 110 and not N = 14. The distribution of the
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Fig. 3. The same as in Fig. 2 but for symmet-
ric WP

bIM with I depends indeed very much on the value of
η. Using N = 14 with η = 0 produces too low value of
Ī and a rather poor carpet. The value N = 110 corre-
sponds to Ī = 10 and leads to richer figures. For this value
of η the WP is axially symmetric for all times, the car-
pet is therefore defined as the quantity 2π sin θ |ψ0(θ, t)|2
as a function of θ and t. Both carpets are also symmet-
ric around t = Trev/4. However only the carpet showing
the symmetric case has an additional symmetry around
θ = π/2. Indeed a time τ which fulfills for all I the
equation

exp[−iω0 τ I(I + 1)] = (−1)I (37)

does not exist. The maxima of the Ψ
(s)
cl (θ, ts) occur for

definite values of θ and are not always distributed sym-
metrically around π/2. These fractional waves can be un-
derstood as waves on a sphere with maximum along a ring
[8]. For t = Trev/4 there is a unique large ring at θ = π/2.

Moreover, since bI0 and YI0 are both real, values s and s′
may exist such that

Ψ
(s′)
cl = Ψ

(s)
cl

∗
, (38)

for example for t = 1/10Trev there are 5 fractional WP
with 0 < s < 4. For s0 = n−m = 4 there is a clone such
that Ψ (4)

cl is equal to the initial Ψ . This WP is represented
as a dark dot at θ = 0 in the left part of Fig. 4 and there
are two pairs of fractional WP, one for s = 0 and s′ = 4,
the other for s = 2 and s′ = 3. By addition of these 4 WP
one obtains only two rings represented as two other large
dots for different θ. In the symmetric case this number is
doubled for Trev/10. As discussed above the existence of
the clone relies upon valus of m/n.

In the right part of Fig. 4 one can most often detect
a ring at θ = π/2. Similar carpets have been discussed in
[16] for the infinite well in one dimension.
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Fig. 4. ‘Carpet’ representation of the time evolution of linear,
asymmetric (left) and symmetric (right) WP with N = 110
and η = 0. In this case the probability density 2π sin θ|Ψ(θ, t)|2
is presented in the contour plot

4.2 Geometrical shapes of clones and mutants

We present in Fig. 5 a short selection of shapes of WP
for 4 different values of η and the same time t = Trev/8.
Only the part of the |Ψ |2 with z > 0 is shown, note that
φ is defined in Oxz plane. In the asymmetric case one
obtains 4 clones for η = 1. When η is decreased these
clones become ‘mutants’ which develop a larger spread
in the angle θ. For η = 0, as well as for η = 1/25, one
obtains two rings around the symmetry axis Oy as well
as a maximum along this axis. In the symmetric case we
illustrate for the circular WP the law given by (33,36):
there is a periodicity with a slide angle −3π/4. For differ-
ent η the clone is transformed into a single mutant with
a larger spread in θ. For the case of the linear WP this
mutant is cylindrically symmetric around Oy. Note that
the mutant has, for η = 1/25, an interesting dissymmet-
rical shape which is necessary in order to make the tran-
sition between the clone for η = 1 and the two rings for
η = 0.

The WP studied in this letter exibits well defined
shapes and a well understood evolution. This is due to
the assumptions that the law (15) holds exactly and
that the bIM are simply distributed according to (8) in
order to correspond to the simple exponentials (11) or
(1).

5 Calculations with realistic WP

It is quite possible to improve our study in order to in-
corporate ingredients which make it more realistic. It is

Fig. 5. Shapes of clones and mutants for asymmetric (left) and
symmetric (right) WP with N = 14 and different η at time t =
Trev/8. The |Ψ(θ, φ, t)|2 is presented in spherical coordinates
as the radial coordinate, θ is an angle with respect to Ox axis
which is the axis of cylindrical symmetry in this case. (Only
upper part of the probability density is displayed)

well known [9,10] that during Coulomb excitation (CE) a
deformed nucleus is excited to a coherent mixture of ro-
tational states. This superposition is also peaked around
a mean value of angular momentum, so one can expect
similar features as predicted by scenario of Averbukh and
Perelman. The most clear case is CE with backscattering
as in this case excited WP has cylindrical symmetry (only
Y I0 components, i.e. η = 0 or linear WP). The partial
waves and fractional revivals have then topology of rings
on a sphere. Therefore for presentation of shapes only one
angular variable (θ) is sufficient. In Fig. 6 we present the
time evolution of WP obtained by CE of 238U bombarded
by 40Ar at E=170 MeV. The amplitudes of excitation of
given I angular momentum eigenstates have been calcu-
lated within semiclassical theory of CE [9]. The left part
shows the ‘ideal case’, i.e. when EI ’s follow perfect rotor
dependence I(I + 1), the right corresponds to time evo-
lution with energies taken from experiment. In the latter
case it is necessary to define time scales of the evolution.
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Fig. 6. Time evolution of nulear rotational wave packet ob-
tained in CE of 238U presented in ‘quantum carpet’ represen-
tation. Contours of 2π sin θ|Ψ |2 are plotted.

In general [3]

Trev =
2π

1
2 |E′′I |I=Ī

, Tcl =
2π

|E′i|I=Ī
. (39)

For perfect rotor case these times are determined unam-
bigously: Trev = (2π/~2)J , Tcl = Trev/(2Ī + 1). For ex-
perimental energies we adopt the following estimation for
Trev. The energies of the ground state rotational band for
238U are well approximated by the two parameter formula

EI ' a I(I + 1) + b [I(I + 1)]2 (40)

with a = 7.5 MeV, b = −0.004 MeV [18]. Our ‘estimated’
Trev, used for the figures (there is no exact revival at all),
is then defined by (39) and (40) taken for Ī determined
from the equation

Ī(Ī + 1) = 〈L2〉 (41)

i.e determined by coefficients of CE rotational WP (see
Fig. 8, p. 82 of [9]). In Fig. 7 we display shapes of WP
(precisely the probability density as a function of θ angle)
for short times, showing spreading of the WP, initially
localized at poles, and clear few rings structure of WP
at particular times (3/400 and 4/400*Trev). In Fig. 8 we
show the same WP after much longer evolution, exhibiting
structures very similar to those observed for very short
times.

Although the ‘carpet’ for experimental energies isn’t as
regular as that for ‘ideal’ ones, still strong revivals of WP
occur. The absolute time scales for nuclear rotation are
very short (Trev ∼ 10−19s, Tcl ∼ 10−20s) and are still be-
yond time resolution of present experimental techniques.

Fig. 7. Shapes of nulear rotational wave packet obtained in
CE of 238U during a short time evolution

Fig. 8. The same as in Fig. 7 for some particular much longer
times

It is clear that the picture which emerges from this study
underlines that the time evolution of nuclear WP depends
strongly on their excitation mechanism as well as from the
assumption of a rigid body value for the moment of iner-
tia. The inclusion of more realistic ingredients introduces
less symmetry and less regularity in the time evolution.

6 Conclusions

There is no doubt that the time evolutions described in
our article have been calculated by observing strictly the
rules of quantum mechanics for a pure state. It is rea-
sonable to believe from the works of [9] and [10] that a
WP formed by Coulomb excitation should move as de-
scribed in Sect. 5. However there is not much hope that
the tools of experimental nuclear physics can evolve in
such a way that this time evolution is observable since
one needs to probe the WP after its formation with the
help of a second projectile. In future the creation of nu-
clear rotational wave packets and observation of their evo-
lution should be in principle possible with gamma lasers.
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Nevertheless the picture of the rotation one should have
in mind must be that given above, i.e. a picture where
the interference effects play a dominant role and differ ac-
cording to the symmetry of the rotor and its initial pre-
paration.

The field of molecular physics looks more appropri-
ate for observation and many theoretical calculations as
well as several experiments have already been realized.
Rotational coherence effects of large molecules have been
studied theoretically and observed for about ten years gen-
erally understood as thermal average of rotational quan-
tum beats. The rotation of a single molecule of O2 [22]
or HB-DC molecular bearing has been recently observed.
The rotation is induced thermally and there is no rea-
son to believe that the system is in a pure state. In
the frame of optimal control theory [24,25], one has also
shown recently how to create rotational coherent WP
of asymmetric–top molecules by designing tailored mi-
crowave pulses [26,27]. The order of magnitude for the
time scales of molecular rotations varies from 10−12s [27]
to 10−14s [26] and is available for experiment. However,
the known excitation mechanisms lead mainly to rovibra-
tional states and an excited superposition is usually com-
posed of smaller number of components than rotational
coherent states discussed in this paper. A most important
challenge for our purpose would be to find the excitation
mechanism that enables the generation of our squeezed
WP. Excitation mechanism of a rigid rotor with intense
laser field is still under study but like Coulomb excita-
tion of nuclei, this mechanism leads only to linear waves
(with η = 0).

The study of the time evolution of WP in simple
sytems produces behaviour which is full of surprises. A re-
cent work on WP transmitted through a potential barrier
has detected the presence of high momentum components
which are present during a short time [28] an event which
is also a challenge for detection.
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